Oil Spill Response: EQUIPMENT & TECHNIQUES

LT Todd Bagetis, USCG, Sector Anchorage

Boom (Types, Components, Failure, Anchoring) **Boom** *Techniques* **Sorbent materials** Skimming equipment **Pumps Storage containers Specialized** equipment

BOOM

Types, Components, Failure, Anchoring

Oil Boom Categories

Conventional

Specialty Boom

- Open Water
- Harbor
- Inland
- Intertidal

- Sorbent
- In-Situ Burning

Open Water Boom

Harbor Boom

Inland Boom

Intertidal Boom

Boom Sizes and Capabilities

Category	Freeboard	Draft	Wave Height
OPEN WATER	> 18"	> 24"	<6'
HARBOR	10-18"	12-24"	<3-4'
INLAND	4-10"	6-12"	<1'
INTERTIDAL	>0"	<6"	CALM

Oil Boom Topics

- Major Components
- Anchoring Systems
- Categories
- Special use Booms (brief overview)
- Common Boom/System Failures
- Protection Strategies

Major Components

- Flotation
- Skirt
- Ballast
- Connector
- Tension Member

Other Components:

- Tow Bridle
- Anchoring
- Lift Points
- Stiffeners
- Hinges

5 BOOM COMPONENTS

Boom Components

FREEBOARD

- Freeboard prevents splash over of oil.
- Wind forces on a boom increase with freeboard surface area.
 - If freeboard exceeds 4-8", boom performance can be adversely affected by high winds (20+ knots)

BALLAST

- Ballast (weighting material) helps keep the boom skirt vertical in water.
- Ballast often consists of a chain, wire cable, or lead weights located along a skirt bottom.
 - The chain or cable could also serve as a tension member.

Boom Components

TENSION MEMBER

- Tension members bear the load imposed by towing, winds, waves and currents.
- Chains, cables, or webbing that run the length of a skirt or flotation are used as the tension member.

SKIRT

- Used to prevent oil from escaping below the boom.
- Forces from currents acting on a boom increase with skirt depth and can cause skirt failure, allowing oil to escape.

Boom Components

FLOTATION

- Positions the boom at the water surface.
- Buoyancy chambers are usually filled with foam or air.
- Heavier boom should be used in rough, offshore conditions
- Lighter boom should be used in calm, inland waters

DRAFT

- Boom draft prevents oil from escaping under a boom in low current conditions.
- Shallow draft skirts reduce tension on a boom.

ANCHOR POINTS

TOWING BRIDAL

Inflatable Boom

FIRE BOOM

<u>6 COMMON BOOM FAILURES</u>

Boom Failure

SUBMERGENCE

- May occur when a boom is deployed or anchored in a fast current or is being towed at a high velocity.
- The tendency for boom to submerge at a given velocity is determined by the boom's reserve buoyancy.
- Higher reserve buoyancy reduces the tendency to submerge.

ENTRAINMENT FAILURE

- Generally occurs at current velocities 0.7 1.0 kts
- Turbulence causes oil droplets to escape under a boom.
- May be prevented by deploying a boom at an angle < 90 degrees to the direction of flow or by using booms designed to operate in fast currents.

Boom Failure

SPLASH-OVER

• May occur in choppy water when wave height is greater than boom freeboard and wave length to height ratio is less than 10 to 1.

DRAINAGE

- Can happen when a small boom is used to hold so much oil that its flows down the face of the boom, escaping to the other side.
- Increasing skirt depth and high freeboard are not usually solutions since they increase the potential for planning failure.

Boom Failure

PLANING

- The loss of oil due to a strong wind and strong current moving in opposite directions causing the boom to heel flat on the water surface.
- Most likely to occur when a boom has inadequate ballast or when an internal tension member is near or above the waterline.

STRUCTURAL FAILURE

 High tension or stress can cause connectors to detach or break, or cause structural components

Anchoring

COMPONENTS

- O Aluminum Danforth Anchors
- O 12" and 24" Floats
- O ¾" x 100' Anchor lines
- O ¹/₂" x 12' Anchor chains
- O Assorted ground tackle

THINGS TO THINK ABOUT ...

- Bottom conditions
- O Depth of water
- **O** Location
- O Submerged objects
- O Tide, current, wind, weather
- O Duration
- O De-con

Anchoring Procedure

Holding Power of Danforth Anchors

Anchor Weight (LBS)	Holding Capacity (LBS)		
	MUD	SAND	CLAY
35	440	550	660
55	770	880	1100
80	1320	1540	1540

BOOM FORCES EXAMPLE

•For a 100 foot section of boom (draft of one foot) at two knots of current, the force is over 250 pounds.

BOOM TECHNIQUES

Now, how do we use all that cool equipment?

CONTAINMENT BOOM

EXCLUSION BOOM

DEFLECTION BOOM:

SORBENT MATERIAL

Pads, POM POMS, Sausage boom...

SORBENT MATERIAL TYPES

SORBENT CHARACTERISTICS

- <u>Adsorbent material-</u> Fluid "oil" adheres or simply "sticks" to the surface
- <u>Absorbent material-</u> Fluid permeates the material like a sponge

- <u>Oleophilic</u> material has a strong affinity for oils
- <u>Hydrophobic</u> material excludes water molecules
- Most sorbent material is constructed of polypropylene

ADVANTAGES

- Can absorb a significant amount of light oil, diesel, #2 fuel
- Can be used with containment boom
- Can be wrung out and reused

DISADVANTAGES

- Heavy
- Difficult to recover
- Does not work well with heavy oils or sheens

POM POMS & SNARES

Advantages:

- Adsorbs oil
- Constructed of plastic materials
- Works well on heavy oils, bunker C, # 6 fuel

Disadvantages:

- Can entangle wildlife
- Not re-usable
- Difficult to dispose of

Pom poms

SKIMMERS AND PUMPS

And their pros and cons...

OIL SKIMMERS

WEIR SKIMMER

DISC SKIMMER

WEIR SKIMMERS

ADVANTAGES

- Easy maintenance
- Easy to deploy

DISADVANTAGES

- Oil collected can contain a large amount of water
- Skim height needs constant adjustment
- Affected by debris

DRUM & DISC SKIMMERS

ADVANTAGES

- Collects relatively dry oillittle water
- Less susceptible to debris

DISADVANTAGES

- Expensive
- High maintenance
- Cumbersome to deploy

BELT-DRIVEN SKIMMERS

ADVANTAGES

- Collects mostly oil-little water
- Good recovery efficiency
- Effective in waves
- DISADVANTAGES
- High operating and maintenance cost
- Performance affected by debris

PUMPING SYSTEMS

USED DURING A RESPONSE FOR:

Dewatering

Product Transfer

□ Flushing/Herding Oil

***It's important to understand the capabilities and limitations of each pump so you can choose the best one for your needs.

TRASH PUMPS

Advantages

• High volumes for dewatering, good with light oils

Disadvantages

- Difficult to pump viscous products
- Not explosion proof or intrinsically safe

DIAPHRAM & AIR DRIVEN PUMPS

Advantages

- Ability to pump sludge, small rocks and debris
- No need to prime

Disadvantages

- Low flow
- Compressor in needed
- Small pumps can run off SCBA air bottles

TEMPORARY OIL STORAGE

- Barrels
- Drums
- Above ground storage tanks
- Vacuum truck
- Bladders
- Small pools

SPECIALTY EQUIPMENT

Boom Vanes

Boom Reels

The End

Questions?

LT Todd Bagetis Todd.J.Bagetis@USCG.mil